

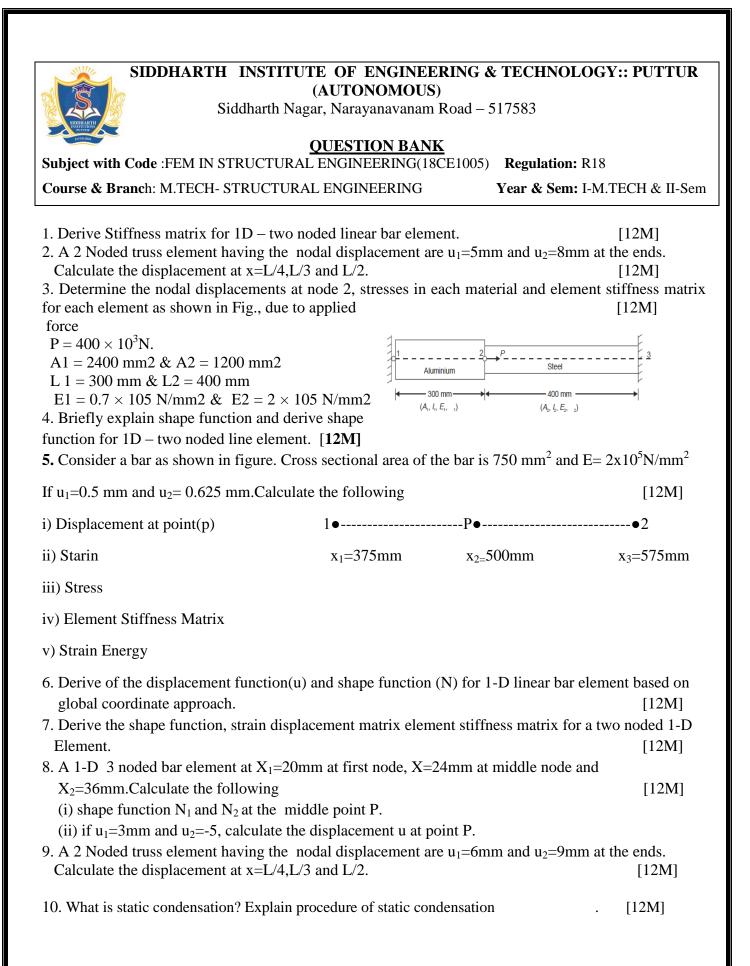
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

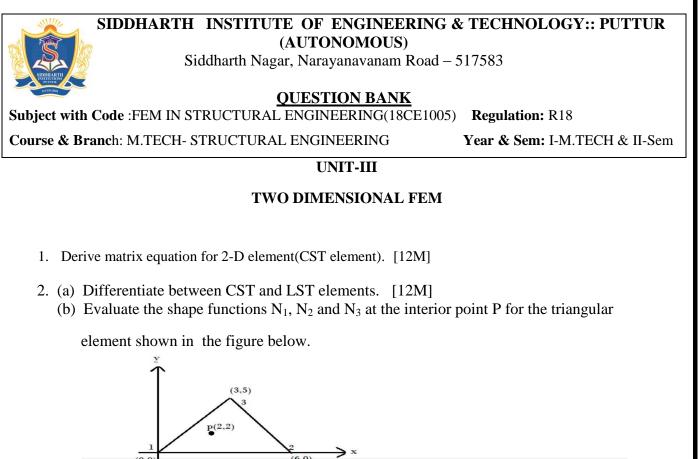
Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK

Subject with Code :FEM IN STRUCTURAL ENGINEERING(18CE1005) Regulation: R18

Course & Branch: M.TECH- STRUCTURAL ENGINEERING


Year & Sem: I-M.TECH & II-Sem


UNIT-I

INTRODUCTION AND PRINCIPLES OF ELASTICITY

1.	Explain the different steps involved in FEM	[12M]
2.	(a) What are the merits, demerits and limitations of Finite Element Methods?	[6M]
	(b) Explain in detail finite element method procedure with an example.	[6M]
3.	nat is potential energy? State and explain the principle of minimum potential energy.[12M]	
4.	Using Rayleigh – Ritz method determine the expression for maximum displaceme The cantilever beam subjected to point W,KN at the free end. Also, compare it wit standard expression.	
5.	Using Rayleigh-Ritz method determine the expression for deflection and B.M in a Subjected to udl over entire span. Find the deflection and moment at mid span and Compare with exact solution.	
6.	Draw a typical three-dimensional element and indicate state of stress in their positi Sense and also derive the equations of equilibrium in case of a 3-D stress system.	
7.	A beam AB of span L simply supported at ends and carrying a concentrated load V Centre C .Determine the deflection At mid span by using Rayleigh-Ritz method at compare with exact solution.	
8.	(a) Explain plane stress problem and plane strain problems.(b) Explain axi-symmetric problem.	[6M] [6M]
9.	(a) Explain discretization and classification of discretization.(b) Explain nodes at discontinuities.	[6M] [6M]

10. A bar of uniform cross section is clamped at one end and left free at other end and free at End is Subjected to a uniform axial load P. Calculate the displacement and stress in a bar by Using two terms polynomial and 3 terms polynomial. Compare with exact solution.[12M]

3. Derive shape functions for four noded rectangular elements. Use natural co-ordinate system.[12M]

- 4. Write and briefly explain the different types of elements for plain stress and plain [12M] strain analysis.
- 5. Derive the shape function for the Constant strain triangle element(CST) element. [12M]
- 6. Derive the strain-displacement matrix for CST element. [12M]

[12M]

- 7. Explain about
 - (a) Geometric invariance
 - (b) Convergent and compatibility requirements
- 8. Derive the shape function and strain-displacement for an rectangular 4-noded element.[12M]
- 9. Write down the following? [12M]
 - (c) Global coordinate system
 - (d) Local coordinate system
 - (e) Natural coordinate system
 - (f) Discretization
- 10. Derive the Shape functions for the 3-noded triangle element (or) L.D.T (or) C.S.T. [12M]

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK

Subject with Code :FEM IN STRUCTURAL ENGINEERING(18CE1005) Regulation: R18

Course & Branch: M.TECH- STRUCTURAL ENGINEERING

Year & Sem: I-M.TECH & II-Sem

UNIT-IV

ISOPARAMETRIC FORMULATIONS AND AXI-PARAMETRIC ANALYSIS

1.	Explain the isoperimetric concept in finite element analysis.	[12M]
2.	Explain the terms isoperimetric, sub parametric and super parametric elements.	[12M]
3.	Derive the Jaccobian matrix for 4-noded rectangular element.	[12M]
4.	Explain the formulation of 4-noded 2-D iso-parametric quadrilateral element. Derive the displacement matrix and stiffness matrix.	ne strain [12M]
5.	Derive the shape function for 4-Noded isoperimetric quadrilateral element.	[12M]
6.	Derive the strain-displacement matrix for 4-Noded isoperimetric quadrilateral element.	. [12M]
7.	Derive the shape function for 8-Noded isoperimetric quadrilateral element.	[12M]
8.	Explain the lagrangian and serendipity elements.	[12M]
9.	Derive the shape function for Axisymmetric (Rectangular) element.	[12M]
10	. Explain the axi symmetric analysis and axi-symmetrical formulation	[12M]

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK

Subject with Code :FEM IN STRUCTURAL ENGINEERING(18CE1005)Regulation: R18Course & Branch: M.TECH- STRUCTURAL ENGINEERINGYear & Sem: I-M.TECH & II-Sem

UNIT-V

THREE DIMENSIONAL FEM AND FINITE ELEMENT ANALYSIS OF PLATES

1.	Explain the basic theory of plate bending.	[12M]
2.	Explain the basic relationships in plate bending theory.	[12M]
3.	Explain about different types of 3-D solid elements.	[12M]
4.	Explain about Hexahedral Isoperimetric elements.	[12M]
5.	What are the three dimensional stresses and strains explain the relation between	them. [12M]
6.	Write the stiffness matrix for a hexahedral element.	[12M]
7.	Explain basic relations in thin plate theory.	[12M]
8.	Briefly explain about Mindlin's approximations.	[12M]
9.	Explain finite element formulation for 8-noded isoperimetric solid element	[12M]
10.	Explain stress resultants in thin plates.	[12M]

